Circular permutation of Bacillus circulans xylanase: a kinetic and structural study.
نویسندگان
چکیده
The 20 kDa Bacillus circulans Bcx is a well-studied endoxylanase with a beta-jellyroll fold that places its N- and C-termini in salt bridge contact. Initial experiments verified that Bcx could be circularly permuted by PCR methods to introduce new termini in loop regions while linking its native termini directly or via one or two glycines. Subsequently, a library of circular permutants, generated by random DNase cleavage of the circularized Bcx gene, was screened for xylanase activity on xylan in Congo Red-stained agar. Analysis of 35 unique active circular permutants revealed that, while many of the new termini were introduced in external loops as anticipated, a surprising number were also located within beta-strands. Furthermore, several permutations placed key catalytic residues at or near the new termini with minimal deleterious effects on activity and, in one case, a 4-fold increase. The structure of one permutant was determined by X-ray crystallography, whereas three others were probed by NMR spectroscopy. These studies revealed that the overall conformation of Bcx changed very little in response to circular permutation, with effects largely being limited to increased local mobility near the new and the linked old termini and to a decrease in global stability against thermal denaturation. This library of circularly permuted xylanases provides an excellent set of new start points for directed evolution of this commercially important enzyme, as well as valuable constructs for intein-mediated replacement of key catalytic residues with unnatural analogues. Such approaches should permit new insights into the mechanism of enzymatic glycoside hydrolysis.
منابع مشابه
Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein.
High thermostability of an enzyme is critical for its industrial application. While many engineering approaches such as mutagenesis have enhanced enzyme thermostability, they often suffer from reduced enzymatic activity. A thermally stabilized enzyme with unchanged amino acids is preferable for subsequent functional evolution necessary to address other important industrial needs. In the researc...
متن کاملHyperexpression of a Bacillus circulans xylanase gene in Escherichia coli and characterization of the gene product.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the ...
متن کاملIdentification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coli.
Two genes coding for xylanase synthesis in Bacillus circulans were cloned and expressed in Escherichia coli. After digestion of genomic DNA from Bacillus circulans with EcoRI and PstI, the fragments were ligated into the corresponding sites of pUC19 and transformed into Escherichia coli. Restriction enzyme mapping of the two inserts coding for xylanase activity indicated distinctly different nu...
متن کاملMapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors.
The Bacillus subtilis xylanase A was subjected to site-directed mutagenesis, aimed at changing the interaction with Triticum aestivum xylanase inhibitor, the only wheat endogenous proteinaceous xylanase inhibitor interacting with this xylanase. The published structure of Bacillus circulans XynA was used to target amino acids surrounding the active site cleft of B.subtilis XynA for mutation. Twe...
متن کاملXylanase homology modeling using the inverse protein folding approach.
Xylanase has been used in wood pulp bleaching in an effort to reduce chlorine release into the environment and pollution associated with paper production. The three-dimensional structure of xylanase is important to enable better understanding of the enzyme mechanism and to help design a more thermostable xylanase mutant. At the time this work was begun, there was no sequence homologous protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2010